Estimation Consistency of the Group Lasso and its Applications
نویسندگان
چکیده
We extend the `2-consistency result of (Meinshausen and Yu 2008) from the Lasso to the group Lasso. Our main theorem shows that the group Lasso achieves estimation consistency under a mild condition and an asymptotic upper bound on the number of selected variables can be obtained. As a result, we can apply the nonnegative garrote procedure to the group Lasso result to obtain an estimator which is simultaneously estimation and variable selection consistent. In particular, our setting allows both the number of groups and the number of variables per group increase and thus is applicable to high-dimensional problems. We also provide estimation consistency analysis for a version of the sparse additive models with increasing dimensions. Some finite-sample results are also reported.
منابع مشابه
Estimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications
The ℓ1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted ℓ1-penalized estimators for convex loss functions of a general form, including ...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملLasso Guarantees for Time Series Estimation Under Subgaussian Tails and $ \beta $-Mixing
Many theoretical results on estimation of high dimensional time series require specifying an underlying data generating model (DGM). Instead, this paper relies only on (strict) stationarity and β-mixing condition to establish consistency of the Lasso when data comes from a β-mixing process with marginals having subgaussian tails. We establish non-asymptotic inequalities for estimation and predi...
متن کاملSparse Group Lasso: Consistency and Climate Applications
The design of statistical predictive models for climate data gives rise to some unique challenges due to the high dimensionality and spatio-temporal nature of the datasets, which dictate that models should exhibit parsimony in variable selection. Recently, a class of methods which promote structured sparsity in the model have been developed, which is suitable for this task. In this paper, we pr...
متن کاملDifferenced-Based Double Shrinking in Partial Linear Models
Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...
متن کامل